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INTRODUCTION

During the time when steel and aluminum bridge rails were common, numerous
transition designs were implemented throughout the country. These relatively flexible bridge
rails were not as demanding on transition designs as today’s concrete barriers and, for this
reason, little effort was directed at identifying the necessary stiffness or the critical impact
conditions for these approach barriers. However, as rigid bridge rails such as the concrete
safety-shaped barrier (CSSB) replaced metal designs, early transition standards were often
retained.

In a recent study (1), a major crash test program was undertaken to evaluate the
impact performance of guardrail-to-bridge rail transitions, many of the widely used designs
were found to be inadequate. In an effort to eliminate this problem, the Federal Highway
Administration (FHWA) issued Technical Advisory (TA) T5040.26 on the subject of
guardrail transitions in January of 1988. Contained within this TA was a description of
several transition systems which were successfully crash tested. The FHWA directed all
state highway agencies to either adopt one of the tested designs or demonstrate the safety
of their standard designs through full-scale crash testing. As a result, the Arizona
Department of Transportation (ADOT) contracted with the Texas Transportation Institute
(TTI) to analyze and test their standard designs.

Thus, the primary objective of this study was to evaluate the safety performance of
ADOT’s guardrail-to-bridge rail designs and to develop and test retrofit design modifications
to alleviate the deficiencies of systems identified as substandard. The research approach,
analysis procedures, and full-scale crash test results are presented in the sections which

follow.



RESEARCH APPROACH

The basic configuration comprising the ADOT transitions incorporates a W-beam rail
element mounted on posts with a reduced spacing of 3 ft.-1 1/2 in. The W-beam rail
extends 12 ft.-6 in. onto the traffic face of the concrete bridge parapet at which point it is
terminated with a standard 10 ga. terminal end shoe. Specially fabricated steel blocks
spaced at 3 ft.-1 1/2 in. are used to block out the W-beam from the face of the concrete
barrier. The steel spacers are connected to the concrete parapet using fabricated steel
anchors embedded in the concrete. The concrete bridge rail is 32 inches in height and has
a standard safety-shaped profile. Although the upper face of the barrier is maintained at
a constant slope, the lower slope of the barrier transitions to a vertical wall over the last 12
ft.-6 in.

The ADOT transition systems which were evaluated in this study were essentially
variations of this basic design. The variations include the use of either steel or wood
guardrail posts in conjunction with either a lower rubrail or curb. The rubrail option
incorporates a 25 ft. section of C6x8.2 rubrail mounted at a height of 12 inches. The rubrail
is attached to every other post in the transition and is anchored to the concrete barrier. The
curb option has a 6 inch curb which extends from the concrete barrier. The face of the curb
aligns with the traffic face of the W-beam barrier. Both steel and wood guardrail posts can
be used with these systems. The steel post systems utilize two W8x21 structural steel posts
with an embedment depth of 68 inches adjacent to the concrete bridge rail to help transition
the lateral of the guardrail. The other five posts in the transition are standard W6x9 posts
with a 44 inch embedment. The W-beam rail is mounted at a height of 27 inches and is
blocked out from the posts using standard W6x9 steel blockouts.

The first two posts adjacent to the concrete barrier in the wood post option are
10"x10"x6’-6" timbers with an embedment depth of 50 inches. The additional posts in the
transition are 8"x8"x5°-4" with a standard embedment of 36 inches. The W-beam is blocked
out from these posts using 6"x8"x14" wood blocks. It should be noted that, in order to
accommodate the dimensions established by the rubrail and steel spacer blocks on the face
of the concrete barrier, the blockouts are oriented sideways. Thus, both the steel and wood

post systems provide a blockout distance of 6 inches.



These transition systems showed promise for meeting the test requirements of
National Cooperative Highway Research Program (NCHRP) Report 230 (2). Use of a
rubrail and blockouts minimizes the potential for wheel snagging on the guardrail posts or
bridge rail end and the stronger posts immediately upstream from the bridge end help limit
dynamic deflections and, thus, prevent vehicle pocketing. However, there were some
concerns that warranted the analysis, testing, and evaluation of these designs. For instance,
the single W-beam rail element had the potential for yielding locally and permitting
structural components of the vehicle to snag on the fabricated steel blocks and/or the end
of the concrete bridge rail. The ability of the concrete insert assemblies and rubrail
anchorage to withstand a severe impact was also a concern. Additionally, it was uncertain
to what extent the presence of the curb would degrade the performance of the transition.

The only way to definitively determine if a transition design can comply with current
impact performance standards is through full-scale crash testing. However, in order to help
establish a rational test matrix and eliminate the need for unnecessary full-scale tests,
computer simulation techniques were used to augment the crash test program. Using
computer simulation, a preliminary analysis of the transition systems was performed to
identify potential weaknesses and to determine critical impact locations for each system.
Additionally, when a system was found to be substandard, computer simulation was used to
evaluate potential improvements and to help identify the limits of performance of the
existing system.

The computer simulation model used in this study was the Barrier VII program (3).
Barrier VII has been used very successfully for analyzing and designing a number of
transitions from flexible to rigid barriers (1,4,5,6). The program has been proven to
accurately predict maximum barrier deflections and degree of snagging, and to identify
critical impact locations for various transition designs.

It should be noted that special considerations had to be taken into account when
modeling the W-beam attachments on the face of the concrete barrier. Due to the presence
of the fabricated steel blocks in the ADOT designs, the W-beam is initially free to deflect
in the vicinity of the concrete barrier end. However, when the W-beam contacts the rigid

barrier, a sudden high lateral resistance is developed. A series of pinned links and springs



was used to model this behavior. Typical Barrier VII input used for the simulation of the
ADQOT transitions is shown in Appendix A.

After the transition designs had been modeled, the impact performance of each
system was evaluated based on simulation results. The primary concern regarding the safety
performance of a transition is that under severe impact conditions, the barrier will deflect
sufficiently to allow pocketing or snagging on the end of the stiffer barrier. Vehicle
pocketing is associated with excessive barrier deflections which permit the front of the
vehicle to impact the end of the stiffer barrier. Snagging is a more common problem and
can occur in two forms. A vehicle’s wheel can contact a post or barrier end, or the stiff
structural components of the vehicle can contact a barrier end, blockout, or post. Note that
the point of impact can significantly affect the degree in which each of these events occurs.
The critical impact point for a transition is defined as the location which maximizes wheel
or frame snagging on the end of the stiffer system. Although NCHRP Report 230
recommends impacting a transition 15 feet upstream from the end of the second and more
laterally stiff system, this number was not originally intended for transitions to rigid concrete
barriers. Recent simulation and testing of transitions to rigid barriers has shown that the
critical impact point for a transition to a rigid bridge rail is somewhat less than this value.
In actuality, the critical impact location changes with the stiffness of the approach guardrail.
Stiff approach barriers redirect impacting vehicles more quickly and, therefore, have a
critical impact point nearer to the end of the rigid rail that do more flexible approach
barriers.

Thus, the first step in the Barrier VII analysis was to determine the critical impact
location for the ADOT transition designs. This was accomplished by simulating a number
of impacts along the length of the barrier and determining which location maximized the
potential for snagging on the exposed end of the bridge rail. The impact conditions used
in these simulations corresponded to test designation 30 in NCHRP Report 230 which is the
recommended test for evaluating the performance of a transition treatment. Test 30 is a
structural adequacy test which involves a 4500 Ib vehicle impacting the barrier at a speed
of 60 mph and an angle of 25 degrees. These conditions examine the strength of the

transition and its ability to contain and redirect an impacting vehicle.



Barrier VII indicated that the critical impact location for both the steel and wood
post transition designs was approximately 6 ft. upstream from the end of the concrete
barrier. This impact point was subsequently used for all simulation and testing of the
ADOT transitions.

It should be noted that in most transition designs, a secondary transition exists at the
point where the transition treatment begins and the standard guardrail ends. In the ADOT
design, this point corresponds to the location where the rubrail begins. Barrier VII
simulations of this upstream transition indicated that the critical impact location for a large
car impact was approximately 10 ft. upstream from the beginning of the rubrail. These
simulations evaluated the potential for wheel snagging on the end of the rubrail and on
intermediate guardrail posts. The expected performance of this system, based on the
simulation results, was poor due to the high probability of severe snagging on the end of the

rubrail section and the post to which it was attached.

Test Matrix Selection

Based on the Barrier VII simulation runs, it was concluded that the basic transition
configuration had a high probability of passing NCHRP Report 230 test requirements.
Simulation results indicated that the W-beam rail would yield locally in bending and tension,
thus permitting some vehicle snagging to occur on the first steel blockout mounted on the
concrete parapet. However, the degree of frame and wheel snagging predicted was not
significant enough to impart unsatisfactory decelerations to the vehicle. Furthermore,
predicted strains for the yielded rail did not exceed the rated ductility of the W-beam,
indicating that rupture of the rail was unlikely. Additionally, deflected barrier shapes
showed no evidence of vehicle pocketing, and the predicted maximum dynamic rail
deflection was only 10 inches.

However, potential problems related to some of the design variations were identified.
For instance, there was concern about the propensity for the W6x9 blockouts used in the
steel post system to collapse under the combined longitudinal and lateral loading
experienced during a transition test. Such behavior would tend to increase the lateral
barrier deflection, resulting in increased vehicle snagging. On the other hand, simulation

results for the wood post system indicated that the shear capacity of one or more posts in



the transition could be exceeded due to combined longitudinal loads from the W-beam and
channel rail elements. Failure of this type would significantly increase barrier deflection and
could result in vehicle pocketing, severe decelerations, or other unacceptable results. For
this reason, the steel post system with channel rubrail was deemed to have the highest
probability of passing NCHRP Report 230 test requirements and was, therefore, the first
transition system tested. It was believed that this test would not only provide a good
assessment of the impact performance of the basic transition configuration, but would
additionally examine the integrity of the concrete insert anchors to which the fabricated steel
blocks and rubrail were attached.

As mentioned previously, the simulation results indicated poor impact performance
for the upstream transition point. Considerable wheel snagging on post 7 (i.e. the post at
which the rubrail began) and other intermediate posts was predicted for both the wood and
steel post systems. This was due to the fact that post 7 was restrained at the top by the W-
beam and at the bottom by the rubrail, thus decreasing deflections at this point and causing
a pocketing behavior to occur. Of the two post types, the steel post system was considered
to be more critical. The blockouts on the standard G4(2W) guardrail upstream from the
transition are 8 inches in depth, as opposed to the 6 inch blockout distance provided by the
W6x9 blockouts used in the standard G4(1S) guardrail. Thus, the predicted degree of
snagging on the intermediate guardrail posts upstream from the transition was less severe
for the wood post system. Furthermore, the wood post system utilized 8"x8" timber posts
in the transition region which tended to "shield" the exposed end of the rubrail. In the steel
post design, however, the rubrail end extends slightly beyond the end of the flange of the
W6x9 steel post and, therefore, represented a more severe hazard. Additionally, as
mentioned above, the W6x9 steel blockouts have a tendency to collapse during impact, thus
increasing the degree of snagging on the post and rubrail end.

There was also concern regarding the performance of the transition with a curb.
Analysis indicated that the curb would impart a significant vertical motion to the test
vehicle. This vertical motion had the potential for raising the effective barrier loading
height and, as a result, increasing the bending moments at the base of the guardrail posts.
Such behavior would tend to increase barrier deflections and lead to increased vehicle

snagging on the end of the bridge rail and first fabricated steel blockout.



The potential problems identified above were discussed with ADOT personnel.
These and other factors were taken into consideration when formulating the test matrix used
in the crash testing phase of this study. As needed, the test matrix was modified to
incorporate testing of retrofit designs when standard systems were found to be deficient.

Crash test procedures and test results are presented in detail in the sections which follow.



CRASH TEST PROCEDURES

The crash test procedures used in this study were in accordance with guidelines
outlined in NCHRP Report 230. The test vehicle was instrumented with three rate
transducers to measure roll, pitch, and yaw rates and a triaxial accelerometer near the
vehicle center of gravity to measure acceleration levels.

The electronic signals from the accelerometers and transducers were telemetered to
a base station for recording on magnetic tape and for display on a real-time strip chart.
Provision was made for transmission of calibration signals before and after the test, and an
accurate time reference signal was simultaneously recorded with the data. Contact switches
on the bumper were actuated just prior to impact by wooden dowels to determine an
elapsed time over a known distance. This information provided a measurement of vehicular
impact velocity. In addition, the initial contact produced an "event" mark on the data record
to establish the exact instant of impact.

Photographic coverage of the tests included three high-speed cameras, one perpendicular
to the installation, one behind the rail pointing downstream of the impact point and a third
camera located overhead near the point of impact. The films from these high-speed
cameras were used to observe phenomena occurring during collision and to obtain time-
event, displacement and angular data. A 3/4-inch video recorder and 35-mm still cameras

were also used for documentary purposes.

Data Analysis Procedures

The analog data from the accelerometers and transducers were digitized, using a
microcomputer, for analysis and evaluation of performance. The digitized data were then
analyzed using the computer programs DIGITIZE and PLOTANGLE. The DIGITIZE
program uses digitized data from vehicle-mounted linear accelerometers to compute
occupant/compartment impact velocities, time of occupant/compartment impact after
vehicle impact, final occupant displacement, and highest 0.010-second average accelerations.

The DIGITIZE program also calculates vehicle impact velocity, change in vehicle velocity



at the end of a given impulse peribd, and maximum average 0.050-second accelerations
along each of three primary vehicle axes.

The PLOTANGLE program uses the digitized data from the yaw, pitch, and roll rate
charts to compute and plot angular displacements versus time. It should be noted that these
angular displacements are sequence dependent with the sequence being yaw-pitch-roll for
the data presented in this report. Furthermore, the displacements are in reference to the
vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed

coordinate system corresponding to the conditions which existed at initial impact.
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